Exercise 319

Find the degree, y-intercept, and zeros for the following polynomial functions.

$$
f(x)=x^{3}+2 x^{2}-2 x
$$

Solution

The degree is the highest power of x in the polynomial.

$$
\text { Degree: } 3
$$

The y-intercept is the point where the curve crosses the y-axis. To find the y-value, plug in $x=0$.

$$
f(0)=(0)^{3}+2(0)^{2}-2(0)=0
$$

Therefore, the y-intercept is $(0,0)$. The zeros are values of x where $f(x)=0$.

$$
\begin{gathered}
f(x)=x^{3}+2 x^{2}-2 x=0 \\
x\left(x^{2}+2 x-2\right)=0 \\
x=0 \text { or } x^{2}+2 x-2=0 \\
x=0 \quad \text { or } \quad x=\frac{-2 \pm \sqrt{4-4(1)(-2)}}{2(1)}=\frac{-2 \pm \sqrt{12}}{2}=-1 \pm \sqrt{3}
\end{gathered}
$$

The zeros are then

$$
x=\{-1-\sqrt{3}, 0,-1+\sqrt{3}\} .
$$

